Large Sets of Noncospectral Graphs with Equal Laplacian Energy

نویسنده

  • Dragan Stevanović
چکیده

Several alternative definitions to graph energy have appeared in literature recently, the first among them being the Laplacian energy, defined by Gutman and Zhou in [Linear Algebra Appl. 414 (2006), 29–37]. We show here that Laplacian energy apparently has small power of discrimination among threshold graphs, by showing that, for each n, there exists a set of n mutually noncospectral connected threshold graphs with equal Laplacian energy with O( √ n) vertices only. Nevertheless, situation becomes opposite when trees are considered, as it turns out that, up to 20 vertices, there exists no pair of noncospectral trees with equal Laplacian energies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unicyclic Graphs with equal Laplacian Energy

We introduce a new operation on a class of graphs with the property that the Laplacian eigenvalues of the input and output graphs are related. Based on this operation, we obtain a family of Θ( √ n) noncospectral unicyclic graphs on n vertices with the same Laplacian energy.

متن کامل

L-Borderenergetic Graphs and Normalized Laplacian Energy

The Laplacian and normalized Laplacian energy of G are given by expressions EL(G) = ∑n i=1 |μi − d|, EL(G) = ∑n i=1 |λi − 1|, respectively, where μi and λi are the eigenvalues of Laplacian matrix L and normalized Laplacian matrix L of G. An interesting problem in spectral graph theory is to find graphs {L,L}−noncospectral with the same E{L,L}(G). In this paper, we present graphs of order n, whi...

متن کامل

Laplacian Energy of a Fuzzy Graph

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

On Laplacian energy of non-commuting graphs of finite groups

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008